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EIC PID with Cherenkov  

mRICH

DIRC

dRICH

See talk by S. Joosten

● Cherenkov detectors form the backbone of PID at EIC 

● Currently, all EIC detector designs use a dual radiator ring-imaging Cherenkov detector (RICH) in the 
hadron direction, a DIRC (detection of internally reflected Cherenkov light) in the barrel, and a modular 
RICH in the electron direction.

● In his talk Sylvester highlighted how simulating these detectors is typically compute expensive, 
involving many photons that need to be tracked through complex surfaces. 

● All three rely on pattern recognition of ring images in reconstruction, and the DIRC is the one having the 
more complex ring patterns! In the following I will use the DIRC as an example. 

https://indico.bnl.gov/event/10699/contributions/53786/attachments/36985/60918/20210907-AI4EIC-Simulation-Bottlenecks.pdf
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Example from GlueXImage of expansion volume  taken from GlueX DIRC, 
Ali et al., JINST 15 (2020) 04, C04054

Cherenkov 
photons

photon yield for p varying 
P from 0 to 5 GeV/c

Image of expansion volume  taken from GlueX DIRC, Ali et al., JINST 15 (2020) 04, C04054
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Example from GlueX

3D (x,y,t) readout  allows to 
separate spatial overlaps. 

Patterns take up significant 
fractions of the PMT in x,y and are 
read out over 50-100 ns due to 
propagation time in bars.

H12700 PMTs have a time 
resolution of O(200 ps) and 
read-out electronics giving time 
information in 1 ns buckets. 

1PMT made by 64 pixels, each 
pixel is 6mm x 6mm size

Displayed PDF. Patterns are 
sparse with variable photon yield 
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Hit pattern defined in (x,y,t)

Image of expansion volume  taken from GlueX DIRC, 
Ali et al., JINST 15 (2020) 04, C04054

Cherenkov 
photons

photon yield for p varying 
P from 0 to 5 GeV/c

https://web-docs.gsi.de/~rdzhigad/
www/research/photon-yield-proton

Image of expansion volume  taken from GlueX DIRC, Ali et al., JINST 15 (2020) 04, C04054
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Geometrical Reconstruction 

charged particle Four of the 8 possible ways to combine the photon vector 
with the track direction vector

● All possible photon paths from the bar to each pixel are stored in 
look-up tables 

● The Cherenkov angle is determined by calculating the angle 
between the photon direction from the LUT and the charged 
track direction from the tracking system 

● Fast reconstruction/hit pattern 

● Other approaches possible (e.g., time-based imaging utilizes 
detection time per pixel; superior reconstruction but memory 
typically hungry)
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Sketch for 
illustrative purposes

R. Dzhygadlo et al. Nucl. Instr. And Meth. A, 766:263 (2014)
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FastDIRC J. Hardin and M. Williams, JINST 11.10 (2016)

● Framework for Fast Monte Carlo and 
reconstruction. 

● Simulations: fast tracing mapping straight lines 
through a tiled plane:

1. Generation 
2. Traces through bars 
3. Traces through expansion volume  

https://github.com/jmhardin/FastDIRC

Each photon bounces O(100) times on average. Developed a billiard 
method that maps the bounces onto a straight-line trajectory through a tiled 

plane 

PDF likelihood

10000 faster than Geant4: 
This facilitates reconstruction of Cherenkov angle with an 

improvement of 30% as compared to the Geometrical approach.
Slower than LUT.  

@ 5 GeV/c

● PID strategy is likelihood based:

○ Ng photons are generated to produce the expected PDF. 
○ Ng and λ chosen to provide best performance.  



7

Machine Learning for Cherenkov Detectors? 
● Cherenkov detectors are relatively slow to simulate with full simulations like Geant 

○ for the DIRC case, each Cherenkov photon reflects on average O(102) times within a bar and this 
makes the simulation CPU intensive.

● Not many AI-based applications:

○ Some work on fast simulation with Cherenkov detectors [1]. 
○ Lack of ML/DL applications for reconstruction/identification: 

■ Most of them use high-level features from Cherenkov detectors and combine them to other 
features from other sub-detectors for global PID [2].   

[1] D. Derkach et al., arXiv:1903.11788v1, 2019
[2] D. Derkach et al., J. Phys.: Conf. Ser. 1085 042038, 2018
[3] C. Fanelli and J. Pomponi, Mach. Learn.: Sci. Technol. 1 015010, 2020

● Can we build an AI-based architecture with the following desired properties?

DeepRICH [3] is the first attempt in this direction. 
We’ll show prototype and discuss path forward. 

● It is fast* and provides accurate reconstruction
● Can be extended to multiple particle types 
● Generalizes to fast simulation
● Can utilize (x,y,t) patterns if time is measured
● Can deal with different topologies and detectors 
● Deeply learns the detector response (real data can be injected)
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DeepRICH Architecture

reconstructed

injected

latent space

● DeepRICH is a custom architecture that combines 

○ VAE for reconstruction 

○ CNN + MLP for classification 

● The model is trained by minimizing the total loss function:

Reconstruction loss (injected vs reco) 

Classification loss 

VAE MMD (latent)

CF and J. Pomponi, Mach. Learn.: Sci. Technol. 1 015010, 2020
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DeepRICH Architecture

reconstructed

injected

latent space

● DeepRICH is a custom architecture that combines 

○ VAE for reconstruction 

○ CNN + MLP for classification 

● The model is trained by minimizing the total loss function:

Reconstruction loss (injected vs reco) 

Classification loss 

VAE MMD (latent)

tackled π, K 
separation.  This 
can be extended 
to, e.g., p 

CF and J. Pomponi, Mach. Learn.: Sci. Technol. 1 015010, 2020
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DeepRICH Architecture

reconstructed

injected

latent space

reconstructed  π 
injected π 

Example of features extracted by 
the CNN from pi and K at 5 GeV. 

The plot shows separation power. 
The 3D visualization is obtained 

with t-SNE. 

Example of hit pattern 
detected in the PMT plane 
(spatial coordinates are 
dubbed x,y, while the time is 
indicated as t) simulated with 
FastDIRC and reconstructed 
with VAE
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Data Preparation
1. Classification is supervised and needs labeled data: 

○ Real data: High purity samples can be created using specific topologies with π, K. 
○ Simulated: Geant simulations (compute expensive) or fast and accurate simulations (FastDIRC). 

2. Been tested on data generated with FastDIRC 
○ (an established approach for (1) simulation + (2) reconstruction), which is orders of magnitude faster than 

Geant in simulating the hit patterns observed in the PMT detection plane.  

3. Built a PDF with FastDIRC 
○ At a given kinematics of the track (P,θ,φ,X,Y) FastDIRC generates ~105 “provisional” points (x,y) in the PMT 

plane from which one obtains a PDF. FastDIRC can also simulate the “real” detected particles which produce 
sparse hit patterns. We studied photon yields of m~20-50 hits. (dataset)

4. Generator-independent (and virtually unlimited) dataset: 
○ At each (P,θ,φ,X,Y) we use the “PDF” (one for π, one for K), and then sample N particles of a given type made 

by a random set of m hits. This allows to build a virtually unlimited dataset and also avoid learning any patterns 
internal to the FastDIRC generation algorithm. (“unlimited” dataset) 

5. Closure Test
○ We compare the reconstruction performance of DeepRICH vs FastDIRC on our dataset. Check consistency of 

the FastDIRC performance (vs kinematics) using independent datasets. 
 



12

Training and Testing 
● Prototyped with a large dataset corresponding to ~2⋅104 kinematic points created to cover the subspace                                 

Δp ✕ Δθ ✕ Δφ ✕ ΔX ✕ ΔY = [4,5] GeV/c ✕ [2,5] deg ✕ [20,90] deg ✕ [-17.5,17.5] mm x [50, 1000] mm                              
where p, θ, φ, X, Y have been divided into equally distant points within those intervals.

● A more dense grid of points combined with a larger number of sampled particles at each kinematic point 
generally improves the PID performance. 

● The generated samples have been then divided into two subsets:

● Training Set: contains particles at certain kinematics used during the training phase --- we include the 
“vertices” of the hypercube in the training. The dataset is divided in:

○ ‘Training particles’ (80%) update the network parameters by minimizing the total loss 
○ ‘Development particles’ (20%) calculate an accuracy score and check if the network is learning properly. Early 

stopping is used to interrupt the training if the development score does not improve after a certain number of epochs.  
● Test Set: used to test if the network provides good performance on unknown kinematics 

● We used Bayesian Optimization to tune the 
multipliers of the loss function, the dimension of the 
latent space, the MMD variance and the learning 
rate. Each call based on 50 epochs.   
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Results
π/K distinguishing power: 

visualizations 

@ 4 GeV/c @ 5 GeV/c

Example of features extracted by the CNN module from π’s and K’s at 4 GeV/c 
(left) and 5 GeV/c (right). These features are then used to classify the particle. 
The plot shows a better separation between π/K at 4 GeV/c, which means that 
the network has good distinguishing power. As expected the points become 
less separated at larger momentum. The 3D visualization is obtained with 
t-SNE. 

2D plot of the absolute difference on each latent variable between π’s and K’s, 
obtained for 5 GeV/c and 4 GeV/c, respectively. The color indicates the absolute 
difference, the larger the difference the larger is the distinguishing power. As 
expected the separation becomes less clear at 5 GeV. Also there is no appreciable 
dependence on the position on the bar resulting in patterns with vertical bands. 
(Bottom) The relative difference showing negative values in the majority of the bins.

latent variables
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Results

In DeepRICH the output of the classifier is 
two-dimensional (π/K) and ∈ R2. 

● These values are utilized to build the DLL between π/K  

● ROC is obtained by changing the threshold on the 
DLL. ROC curves are produced generating 350 
particles for each kinematics

● The AUC is used as a metric to compare 
DeepRICH to FastDIRC

AUC(DeepRICH) ≳ 0.99 AUC(FastDIRC)

@ 4 GeV/c @ 5 GeV/c
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Results

(1) The ratio between DeepRICH and FastDIRC AUCs: Each AUC is calculated to 
show the partial dependence on one kinematic parameter by marginalizing on all other parameters. 
Notice at 4 GeV/c that the two reconstruction methods perform almost identically. 

(2) Radar plots of correlation between the AUC and each kinematics parameter for 
DeepRICH and FastDIRC. The two reconstruction algorithms perform similarly as a function of the kinematic 
parameters. AUC depends on momentum, as distinguishing power gets lower at larger momentum.

(3) Learning Curve: learning curve corresponding to known and unknown kinematics combining the 
datasets with momentum ∈ [4,5] GeV/c. Each point is obtained as an average over 3 experiments—notice in 
some experiment the early stopping activated earlier. These results prove the ability of DeepRICH to reconstruct 
unknown kinematics.

3

1

2

DeepRICH FastDIRC
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Performance

After training, the inference time is almost constant as a function of 
the batch size, meaning that the effective inference time—i.e., the 
reconstruction time per particle—can be lower than a μs, the 
architecture being able to handle 104 particles in about 1.4 ms in the 
inference phase. Notice that the corresponding memory size in the 
inference phase is approximately equal to the value reported in the 
table. 
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Conclusions
● DeepRICH developed for π/K can be extended to multiple classes  (e.g., p, K, π)... 

● Can also be extended to larger phase space and to include entire bar box. 

○ Remind that the size of the network is related to the weights and the dimensions of the architecture. 

○ The training time of DeepRICH has not been optimized. One can improve this in different ways, e.g., sparser 
hypercube, distributed training. Without optimization, this time can be as large as 1/2 day with the described 
configuration on a single Titan V GPU.

● Start dedicated study as generative model for Fast Simulation. 

● Performance will be characterized and benchmarked against other methods using different datasets (other 
than FastDIRC); in perspective one can train on high purity samples from real data. 

● Topology independent. Can be adapted for other imaging detectors.  

● Cherenkov detectors are the backbone of PID at EIC.

● DeepRICH is one of the few DL-approaches in the market (if not the only one) dedicated to PID 
with imaging Cherenkov detectors that showed promising results with a custom architecture. 

● Prototype developed and proof of principle shown using simulated data in a limited phase space.    
Lot of exciting work is planned for the near future to further extend/improve it, see above.
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